COMMUNICABLE DISEASE CENTER # SALMONELLA SURVEILLANCE #### CONTENTS. . TABLE OF CONTENTS For the month of November - I. SUMMARY - II. REPORTS OF ISOLATIONS FROM THE STATES - III. CURRENT INVESTIGATIONS - IV. REPORTS FROM STATES - V. SPECIAL REPORTS - VI. INTERNATIONAL - VII. FOOD AND FEED SURVEILLANCE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE/PUBLIC HEALTH SERVICE Bureau of Disease Prevention and Environmental Control ### **PREFACE** Summarized in this report is information received from State and City Health Departments, university and hospital laboratories, the National Animal Disease Laboratory (USDA, ARS), Ames, lowa, and other pertinent sources, domestic and foreign. Much of the information is preliminary. It is intended primarily for the use of those with responsibility for disease control activities. Anyone desiring to quote this report should contact the original investigator for confirmation and interpretation. Contributions to the Surveillance Report are most welcome. Please address National Communicable Disease Center, Atlanta, Georgia 30333 Attention: Chief, Salmonella Unit, Epidemiology Program National Communicable Disease Center Epidemiology Program Bacterial Diseases Section Salmonella Unit Statistics Section Veterinary Public Health Section Veterinary Public Health Laboratory David J. Sencer, M.D., Director Alexander D. Langmuir, M.D., Chief Theodore C. Eickhoff, M.D., Chief Michael D. Treger, D.V.M. Steven A. Schroeder, M.D. L. Ariel Thomson, D.D.S. Richard C. Arnold James H. Steele, D.V.M., Chief Mildred M. Galton, M.Sc., Chief Collaborators Laboratory Program **Bacteriology Section** Enteric Bacteriology Unit William H. Ewing, Ph.D., Chief #### TABLE OF CONTENTS | | | Page | |------|---|--------| | ı. | SUMMARY | 1 | | II. | REPORTS OF ISOLATIONS FROM THE STATES | 1 | | | A. Human B. Nonhuman | 1
1 | | III. | CURRENT INVESTIGATIONS | 2 | | | NONE | | | IV. | REPORTS FROM THE STATES | 2 | | | NONE | | | ٧. | SPECIAL REPORTS | 2 | | | NONE | | | VI. | INTERNATIONAL | 2 | | | NONE | | | VII. | FOOD AND FEED SURVEILLANCE | 2 | | | A. Progress Report on Food Surveillance B. Regulations Concerning the Import and Sale of Egg Products in West Germany | 2 | | | C. Regulations Concerning the Import of Feeds of Animal Origin into | 4 | | | West Germany D. Results of Examination of Eggs and Egg Products for Salmonella During FY 1966 | 4 | #### I. SUMMARY In November 1966, 2,121 isolations of salmonellae were reported from humans, an average of 424 isolations per week (Tables I and II). This number represents a decrease of 6 (1.4 percent) from the weekly average of October 1966 and an increase of 35 (9.0 percent) over the weekly average of November 1965. The cumulative number of isolations reported for the first eleven months of 1966 (18,581) represents a decrease of 2.5 percent from the total number of isolations reported during this same period in 1965 (19,052). Reports of 1,026 nonhuman isolations of salmonellae were received during November, an increase of 313 (43.9 percent) over October 1966 (Tables IV, V, and VI). #### II. REPORTS OF ISOLATIONS FROM THE STATES #### A. Human The seven most frequently reported serotypes during November were: | Rank | Serotype | Number | Percent | Rank Last Month | |----------------------------|---|--------------------------------------|--|-------------------------------------| | 1 | S. typhi-murium and S. typhi-murium var. copenhagen | 628 | 29.6 | 1 | | 2
3
4
5
6
7 | S. newport S. heidelberg S. enteritidis S. infantis S. saint-paul S. blockley | 181
131
115
104
85
68 | 8.5
6.2
5.4
4.9
4.0
3.2 | 3
2
4
5
7
Not Listed | | | Total | 1312 | 61.8 | | | | Total (all serotypes) | 2121 | | | The age and sex distribution (Table III) was similar to that of previous months. #### B. Nonhuman Thirty-seven states reported nonhuman isolations, represented by 70 different serotypes. The seven most frequently reported serotypes during November were: | Rank | <u>Serotype</u> | Predominant Source
and Number | Number | Percent | Rank Last
Month | |------|---|---|--------|---------|--------------------| | 1 | S. heidelberg | Turkeys (57) and
Porcine (37) | 114 | 11.1 | 1 | | 1 | S. typhi-murium and S. typhi-murium var. copenhagen | Porcine (34),
Chickens (26) and
Bovine (21) | 114 | 11.1 | 2 | | 3 | S. derby | Porcine (83) | 103 | 10.0 | Not Listed | | 4 | S. anatum | Porcine (53) | 94 | 9.2 | Not Listed | | 5 | S. saint-paul | Turkeys (26) and
Porcine (20) | 53 | 5.2 | 7 | | 6 | S. schwarzengrund | Turkeys (46) | 50 | 4.9 | 6 | | 7 | S. infantis | Chickens (16) | 47 | 4.6 | 4 | | | Total | | 575 | 56.1 | | | | Total (all serotypes) | | 1026 | | | The most prominent nonhuman sources of salmonellae reported during November were porcine, 312 (30.4 percent); turkey, 215 (21.0 percent); chicken, 111 (10.8 percent); animal feed, 61 (5.9 percent); and bovine, 40 (3.9 percent). <u>Salmonella derby</u> ranks third this month due mainly to 83 isolates of porcine origin, 52 of which were reported by Louisiana and 31 by the National Animal Disease Laboratory, Ames, Iowa. #### III. CURRENT INVESTIGATIONS NONE #### IV. REPORTS FROM THE STATES NONE #### V. SPECIAL REPORTS NONE #### VI. INTERNATIONAL NONE #### VII. FOOD AND FEED SURVEILLANCE #### A. Progress Report on Food Surveillance As indicated in this section last month, salmonellae have been isolated both from carmine dye, a commonly used red food coloring, and from products containing carmine. The Veterinary Public Health Laboratory has been examining foods containing red food coloring for salmonellae, shigellae, <u>Escherichia coli</u>, and coagulase-positive staphylococci. Twenty-seven samples of such foods were received from Florida in November. The foods were candy, 3; food decoration, 5; non-gelatin dessert, 4; gelatin dessert, 7; soft drink mix, 5; cake icing, 1; pie filling, 1; strawberry flavoring, 1. All samples were negative. A total of 187 samples containing red food coloring were received from Washington, Louisiana, North Carolina, New York City, Virginia, Illinois, Colorado, and New Mexico. The samples were soft drink mix, 35; frosting mix, 27; gelatin dessert, 22; food decorations, 12; liquid soft drink, 11; candy, 9; cake mix, 8; cookies with filling, 7; food coloring, 7; canned diet food, 7; non-gelatin dessert, 3; cereal, 3; chewing gum, 6; multiple vitamins, 3; gravy mix, 3; and miscellaneous food samples, 24. The samples were examined for the presence of salmonellae and \underline{E} . \underline{coli} , and all were found to be negative. B. Regulations Concerning the Import and Sale of Egg Products in West Germany Abstracted from Verordnung zum Schutze gegen Infektion durch Erreger der Salmonella-Gruppe in Eiproduction. December 17, 1956 (BGBI I S. 944). Egg products are not to be offered for sale as foodstuffs without adequate preliminary treatment, by which the agents of the salmonella group and other agents of the group of the Enterobacteriaceae are killed. Egg products are defined as liquid, frozen, or powdered egg. The nature of the preliminary treatment is to be noted on the containers. Anyone wishing to pre-treat egg products needs approval from responsible authorities. Approval is given only when the applicant has facilities available that guarantee controlled adequate preliminary treatment. Anyone pre-treating egg products is obligated to keep records of incoming and outgoing material according to source, nature of product, quantity, time and date of treatment, and receiver of the egg products. It is forbidden to transport egg products as foodstuffs into West Germany without adequate preliminary treatment, with the exception of duty free areas. The clearance of egg products through customs service sites takes place only after a certificate of the responsible authorities is given to customs officials showing that the egg products, according to the results of bacteriological examination, are adequately pre-treated. In similar shipments, the samples required for the official examination are indicated below: Up to 3 packages - samples from all packages 4 to 10 packages - samples from at least 3 packages 11 to 20 packages - samples from at least 4 packages 21 to 40 packages - samples from at least 5 packages 41 to 60 packages - samples from at least 6 packages 61 to 1000 packages - samples from at least 5% of all packages If there is a shipment of more than 1000 packages, then the number of random samples taken is limited to 3 percent in the number of packages exceeding 1000 and to 2 percent of the number of packages exceeding 3000. Samples of approximately 30 gm. are randomly taken using sterile technique. The homogeneity of the contents of a shipment is assumed if a uniform trademark, nature of the package, or the code numbers permit this to be concluded. The samplings are not taken if the egg products are subjected to preliminary treatment in a plant located in a duty free area. The provisions of the decree are not applicable to egg products destined for shipment to regions outside the range of enforcement of the decree. C. Regulations Concerning the Import of Feeds of Animal Origin into West Germany. Abstracted from Verordnung zum Schutze gegen die Gefahr der Einschleppung von Salmonellen durch Futtermittel tierischer Herkunft aus dem Ausland. February 14, 1958 (GVBl. S. 27). Feeds of animal origin are defined as parts or products of animals of all kinds used as feed either processed or unprocessed, or mixtures in which feeds of animal origin are contained. Animals include marine animals and fowl, as
well as mammals. Feeds may be imported only if there is displayed to customs officials a certificate from responsible authorities of the exporting countries that the feed during or after drying was submitted to a heating process or to another equivalent procedure through which salmonellae, if present, are killed. The regulations are also applicable if the feeds are destined for use as fertilizer. Feeds are to be imported only in new paper sacks except for feeds processed into cake form. The latter may be imported in other packing material. The regulations do not apply to direct transport or storage of feeds under customs supervision or to the shipment of samples of 250 gm. or less. Health authorities may grant exceptions from the regulations if there is no fear of endangering the health of humans or native cattle. The feeds may furthermore be imported only if the official bacteriological examination of the material for salmonellae has shown a negative result. Sampling required for analogous shipments: 1 to 100 sacks - samples from at least 5% of the sacks 101 to 500 sacks - samples from at least 3% of the sacks 501 and above - samples from at least 2% of the sacks If salmonellae are found, the feeds can be imported only after they have been submitted to a heating process under official supervision or to another equivalent procedure, by which the salmonellae are killed. The clearance of feeds through customs service will be approved only after presentation of a certificate from health authorities showing negative results of the official examination. Copies of these regulations were received from Dr. Leistner, Director, Institut fur Bakteriologie und Histologie, Bundesanstalt fur Fleischforschung, Kulmbach, West Germany. D. Results of Examination of Eggs and Egg Products for Salmonella During FY 1966. Reported by the U.S. Food and Drug Administration. A report of findings on eggs and egg products by the Food and Drug Administration during fiscal years 1964, 1965, and the first 3 quarters of 1966, appeared in Salmonella Surveillance Report No. 50 (page 3). Information for the fourth quarter of 1966 has been received and can be compared with the first 3 quarters in the table below. The increase in percent of salmonella isolations in the fourth quarter is notable. It is difficult to determine whether this is a real increase or if it is a result of more selective sampling. It is believed that selective sampling had a significant influence. ### Results of Examinations of Eggs and Egg Products for Salmonella Organisms | Fiscal years: | Inv | vestigatio | | les | | Official | . Samples | | |---------------------|------|------------|------|------|------|----------|-----------|------| | riscal years: | 1-6 | | | /+1- | 1-4 | | | /+h | | | lst | 2nd | 3rd | 4th | lst | 2nd | 3rd | 4th | | Samples examined | 40 | 86 | 35 | 39 | 76 | 112 | 92 | 29 | | Percent positive | 42.5 | 32.6 | 11.4 | 23.1 | 46.0 | 23.2 | 12.0 | 31.0 | | Subsamples examined | 634 | 1329 | 532 | 486 | 733 | 916 | 1076 | 230 | | Percent positive | 12.9 | 10.5 | 0.94 | 4.1 | 20.0 | 9.3 | 2.5 | 10.0 | TABLE I COMMON SALMONELLA SEROTYPES ISOLATED FROM HUMANS IN THE UNITED STATES DURING *NOVEMBER, 1966 | | | | _ | | | | | | | | | _ | _ | | | | |--|----|----|----|-----|-----|-----|------|-------------------|--------------|------------------|------------------|------------------|-----|--------------------------|--------------|-------|------------------|--------------|-------------------|--------|-------------|------|-------|-------|------|-----|-------------------|-----|--------------|------|---------|---------------|------|------------------|-------------------|---------------------|--| | | L | | | | | | | | | | | | | С | | | | | | D R | E P (| | | | | T E | R | , | | | | | | _ | | | | | SEROTYPE | L | | | ENG | - | _ | _ | 4 | | MIDDL | | _ | | _ | - | _ | ORTH | | _ | , | | EST | - | - | | _ | | | _ | _ | TH A | _ | | _ | _ | | SEROTYPE | | | ME | NH | VT | MAS | S R | CO | NN T | TOT | NY-A | NY-BI | NY-0 | NJ | PA | TOT | OHIO | IND | ILL | MICH | WIS | TOT | MINN | IOWA | MO I | ND SD | NEBR | KAN | TOT | DEL | MD | DC V | A WV | NC. | SC (| GA F | FLA | TOT | | | anatum
bareilly
berta
blockley
braenderup | 1 | | | | 3 1 | 1 4 | | 6 5 | 1 | 1 | 2 | | 3 | 8 8 2 2 | 1 | | 4 1 | 1 | 1 | 1 4 | | 1 | 1 | | | 1 3 | 3 3 | | 4 | | 1 | 1 2 | | 5 | 2 | 17 | anatum
bareilly
berta
blockley
braenderup | | oredeney
chester
cholerae-suis v kun
cubana
derby | | | | | 3 | | 1 | 3 | 1 | 2 | 4 | | 1 2 | 2 2 | 1 | | 1 3 | 1 1 | 1 | 3 | 1 | | 1 | | | | 1 | | 2 | | 2 | 2 | | 1 | 1 | 1 6 | bredeney
chester
cholerae-suis v kun
cubana
derby | | enteritidis
give
neidelberg
Indiana
Infantis | | | 1 | 2 | 3 | | 3 | 24
4
7 | 15
5
1 | 2 | 5
6
3
6 | 2 2 | 3 | 39
3
16
3
16 | 5 | 2 | 10
5
6 | 2
14
4 | 10
3
1
1 | | 2
2
1 | 1 | 1 1 1 | | | 12 | 3
3 | 1 | 1
3
1 | | 3 1 4 | 5
14
11 | | 7
1
3
4 | 8 | 19
1
29
26 | enteritidis
give
heidelberg
indiana
infantis | | java
javiana
kentucky
litchfield
livingstone | | | | | 1 | | 1 | 1 1 | 1 | 2 | 1 | 2 | 2 | 4 | 1 | | 2 | 1 | 1 | 1
1 | 2 | | | | | 1 | | | | | | | | 2 | 5
17 | 5
19 | java
javiana
kentucky
litchfield
livingstone | | nanhattan
neleagridis
niami
nississippi
nontevideo | | | | | 1 | | 1 | 1 2 | 1 | 1 6 | 3
2
1 | 1 15 | | 3 26 | | | | 1 | 4 | 1 | | | | | | | | | 1 | | | | | 1 2 | 9 | 10 | manhattan
meleagridis
miami
mississippi
montevideo | | muenchen
newington
newport
oranienburg
panama | | | | | 7 | 1 | 1 | 8 | | 1
6
1
2 | 1 4 1 | 1
2
6
3 | 1 4 | 1
16
8
6 | 1 1 2 | 1 | 1
4
5
1 | 2 3 | 1 1 2 | | 2 | | 1 2 4 | | | 1 1 | 1
4
5
1 | | 2 | | 2 | 3 | | - 1 | Г | | muenchen
newington
newport
oranienburg
panama | | oaratyphi-B
oona
saint-paul
san-diego
schwarzengrund | | | | | 6 | | | 6 | 2 | 2 | 1 | 2 | 11 | 18 | 2 | | 3 | 5 | 3 | | 1 | 1 | | | | | 2 | 4 | 3 2 | | 9 | 1 | | 1 9 | 2 2 | 3 | paratyphi-B
poona
saint-paul
san-diego
schwarzengrund | | senftenberg
ennessee
chompson
yphi
yphi-murium | 1 | | | 5 | 5 | | 2 | 5
2
5
83 | 1
2
19 | 6
1
22 | 5
2
28 | 2
1
22 | | 4
17
6
120 | 2
3
26 | 1 1 2 | 1
2
42 | 3
1
13 | 2
1 | 7 | 1 1 7 | | 4 14 | | 1 | 8 | 1
9
4
32 | 4 | 1
2
13 | | 2 1 6 2 | 1
1
9 | | 1 1 3 | 1
1
3
37 | 7 7 | senftenberg
tennessee
thompson
typhi
typhi-murium | | yphi-murium v cop
rbana
weltevreden
worthington
antypable, group B | | | 1 | | 2 | 1 | | 1 1 1 | | 1 | 1 | 2 | 1 | 1 2 1 | | | | 2 | | 2 | | | | | | | | | | 5 | | | | 1 | 1 | 1 6 | typhi-murium v cop
urbana
weltevreden
worthington
untypable, group B | | intypable, group Cl
intypable, group C2
intypable, group D
intypable, group E
intypable or unknown | | 6 | | | | | | 6 | | | | | | | | | | | 4 | 4 | | | | | | | | | | 2 | | | | | | 2 | untypable, group Ci
untypable, group Ci
untypable, group D
untypable, group E
untypable or unknown | | Total Common | 2 | 7 | 2 | 132 | 2 3 | 50 | 0 1 | 96 | 50 | 65 | 79 | 64 | 106 | 364 | 49 | 8 | 96 | 59 | 52 | 264 | 20 | 3 | 31 | 0 0 | 1 | 37 | 92 | 11 | 37 | 10 3 | 5 2 | 52 | 0 7 | 2 1 | 151 | 370 | Total Common | | Total Uncommon | 0 | 0 | 1 | | 1 1 | 1 | 2 | 5 | 0 | 4 | 8 | 2 | 1 | 15 | 0 | 1 | 4 | 0 | 2 | 7 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 5 | 11 | 17 | Total Uncommon | | Grand Total | 2 | 7 | 3 | 133 | 3 4 | 52 | 2 2 | 01 | 50 | 69 | 87 | 66 | 107 | 379 | 49 | 9 | 100 | 59 | 54 | 271 | 20 | 3 | 31 | 0 0 | 1 | 37 | 92 | 11 | 37 | 10 3 | 5 2 | 53 | 0 7 | 7 1 | 162 | 387 | Grand Total | TABLE I (Continued) COMMON SALMONELLA SEROTYPES ISOLATED FROM HUMANS IN THE UNITED STATES DURING NOVEMBER, 1966 | | | | | 0 1 | 0 0 | G R A | E A | 1 C | D I | I V I | s 1 | 0
N | A N | 0 2 | ω
α | P O R | 1 1 1 | N | C | N
H | M | | | | 202 | - | - | - | | | - do | | |--|------|-------|--------------------|--------|------------|---------|-------|-------------|---|-------|-------|--------|--------|----------|--------|-------|--------|----------|------|--------|-------------|----------|--------------|-------|---------------------------------------|--|-----------------------------------|---|---|---|---------------------------------|--| | SEROTYPE | EAST | SOUT | EAST SOUTH CENTRAL | TRAL | 3 | WEST | SOUTH | | CENTRAL | | | | MOUN | MOUNTAIN | | | | - | | PA | PACIFIC | | | OTHER | | TOTAL | AL TOTAL | - | CUM. TOTAL | | 1965
CUM. | SEROTYPE | | | KY | ENN A | KY TENN ALA MISS | SS TOT | FARK | 7 | OKLA | TEX | TOT | MONT | T IDA | A WYO | COLO | E | ARI U | UTAH | NEV TO | TOT | WASH | ORE | CAL AL | ALAS HAI | VI TOT | VI | | | | 10 | | 101 | TAL | | | anatum
bareilly
berta
blockley
braenderup | | 7 | | | NI FI | 2 2 | | 1 7 7 1 | 1 6 2 3 | | - | | | | - | | - | - | | ~ | 1 19 | | 3 24 | | | 7 0.3
7 0.3
1 0.05
168
3.2
16 0.8 | | 305
72
31
31
103 | 1.6 | 278 1.
97 38
356 1. | 22264 | anatum
bareilly
berta
blockley
braenderup | | chester
cholerae-suis v kun
cubana
derby | 2 2 | | | | शा ना श | - | | 1 2 | 3 | | - | | 2 2 | | | | | 2 2 | | - | 1 01 | - | 1 12 | | | 35 1.7
2 0.1
3 0.1
444 2.1 | | 138
96
96
24
0
370 | 0.7 | 104
131
131
131
34 | 3.7.2.5 | bredeney
chester
cholerae-suís v kun
cubana
derby | | enteritidis
give
heidelberg
indiana
infantis | | 0 0 | - | 2 6 | ন কা আ | 0 00 17 | - | 16 | 25 25 13 | | - | | ъ | | | 1 2 | | 6 3 | 2 | 2 1 | 2 10 7 | | 5 19 8 | | 115
6
131
7
4
104 | 1115 5.4
6 0.3
131 6.2
104 4.9 | 1,1 | | 6.2 95:
0.4 110
0.3 2
6.8 1,05 | alole lelet | 5.0
7.7
1.1
1.1
1.5 | give
give
hedelberg
indiana
infantis | | java
javiana
kentucky
litchfield
livingstone | | | | 3 | <u>w</u> 4 | 3 6 | - | 30 | 34 6 | | | | | | | | | | | | 98 21 | - | 3 4 | | | 332
57
2.7
4
4
0.2
5
5
5
5
7
0.2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | | | 1.8 1 1.5 3 0.2 0.4 | 185
104
16
16
16
0. | 0.1.0 | java
javiana
kentucky
litchfield | | manhattan
melegridis
miami
mississippi
montevideo | 2 | 1 3 | - | | ला लाना | 7 7 7 | - | 3 13 | 2 9 | | | | | | | | | | | | 4 6 | | 3 6 | | 2 1 7 | 21 1.0
2 0.1
14 0.7
44 2.1 | | 1114
8 0.0
449
49 0
1322 | 0.06 | 88
35
421
2. | 6 222 | manhattan
meleagridis
miami
mississippi
montevideo | | muenchen
newington
newport
oranienburg | | 2 6 | e . | 8 (1) | ۳
هاها | 21 4 | 3.2 | 1 4 5 2 2 3 | 2 | | | | - | | 7 | | | 00 | | | 2 2 | | 2 20 2 3 3 3 | | 30
9
9
181
43
43
17 | 30 1.4
9 0.4
143 2.0
17 0.8 | 4 209
4 47
5 1,197
8 257 | | 1.1
6.4
1,1
2.0
5.0
1.4 | 51
51
126
5.556
2.17 | 10.01. | muenchen
newington
newport
oranienburg | | paratyphi-B
poona
saint-paul
san-diego
schwarzengrund | | | | | ed -d | 2 1 | | 7 | 70 -0 | | | | | | 4 1 | - | | 4 4 4 | 2 2 | 7 | 9 | | 6 16 | | 1 8 7 | 20
5
0.2
85
4.0
112
0.6 | | | 0.8
0.2
0.6
0.6
0.3 | 43
687
3.
222
1.
95 | 3.6 pp | paratyphi-B
poona
saint-paul
san-diego
schwarzengrund | | senftenberg
tennessee
thompson
typhi
typhi-murium | | 24.60 | 7 1 | 2 14 | ω φ | 1 1 14 | _ | 1 5 5 | 2 1 9 5 6 | - | | | 1 1 35 | | 9 | | | 1 1 1 39 | 17 | 3 2 3 | 1 2 5 5 5 6 | | 1 1 2 2 9 75 | | 12
14
51
612 | 112 0.6
114 0.7
51 2.4
45 2.1
112 28.9 | 5, | | 0.4 70
0.7 168
2.9 510
3.4 666
28.6 5,991 | 70 .4
168 .9
510 2.7
666 3.5
991 31.4 | | senftenberg
tennessee
thomson
typhi
typhi | | typhi-murium v cop
urbana
welrevreden
worthington
untypable, group B | | | 5 | 5 | n
8 | in . | | | 3 1 6 | | 2 | | | 00 | | | | 74 00 | | - | 7 1 7 | | 2 4 4 3 3 | | 1 2 | 3 0.1
27 0.5
27 1.3 | | 255
27
27
28
441
123
11 | 0.8 | 34 34 1. | 20004 | typhi-murlum v cop
urbana
weltevreden
worthington
untypable, group B | | untypable, group Cl
untypable, group C2
untypable, group D
untypable, group E
untypable or unknown | | | | | | | | 1 2 | 1 2 2 2 | | | | | 15 | | | | 15 | | | | | | | | 8 0.6
8 0.4
8 0.4 | | 1114
68
56
12
76 | 0.6 | 882
39
49
107 | 4666 | untypable, group Cl
untypable, group C2
untypable, group D
untypable, group E
untypable or unknown | | Total Common | 10 2 | 22 1 | 15 16 | 63 | 28 | 87 | 15 | 188 | 318 | | 4 | 0 | 79 | 29 | 17 | 4 | 1 12 | 120 | 14 1 | 13 17 | 172 | 2 4 | 41 242 | | 2,029 | 9 95.7 | 7 17,905 | - | 5.96 | - | | Total Common | | Total Uncommon | 0 | 0 | 3 0 | 7 | - | 5 | - | 27 | 34 | 0 | 0 | 0 | - | - | 3 | - | 0 | 9 | - | 0 | 2 | 0 | 2 5 | | 6 | 92 4.3 | 3 676 | | 3.6 | H | | Total Uncommon | | Grand Total | 10 2 | 22 1 | 18 16 | 99 | 5 29 | 92 | 16 | 215 | 352 | 1 | 7 | 0 | 65 | 30 | 20 | 2 | 1 12 | 126 | 15 1 | 13 17 | 174 2 | 2 4: | 43 247 | | 2,121 | | 100.018,581 | 1 | 100.0 19,052 | 52 | | Grand Total | | | | 1 | - | - | | | | | | | - | | | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | 61 0 | 1 | G | 41 | č. | 7 | 0 | 6 | 50 | (1 | 6 | Z | 29 | ς | 9 | 1 | s | 05 | 0 | 30 | 58 | 29 | ſ | 7 | ot | 71 | 74 | 2 | 5 | £ | 7 | O quotypable group O | |----------|----|-----|------|------|----|------|------|------|------|-----|----|--------|----|-----|-----|-----|--------------|-----|-----|------------|--------|----|-----|------|------|--------------|-----|-----|------|-----|--| | | | | | | | | | | | | | ı | | | | | | | | | 1 | | | | | £ | | | | | nutypable Rroup A
untypable Broup H
H quora aldaqunu | | | | | | | | | | 1 € | | | | ι | | | | | | | | 1 | 1 5 | | | | | | | | | | ueldwegisan
apalskalsan
pacelan
peeuasses
mogsiln | | | | | | | | | | | | | | t | | | | 1 | t
t | | | | ſ | | | | | | | T. | | | elodania
like-bra
sazenkilia
saza
silivenenia | | | | | | | | | | , | 1 | | | 1 | | | | | 1 | | | ī | 1 | z | | | | z | | ι | | | nedmassa
grudgais
grudsmid
eninedeos
vaineis | | | | | | | | | | | 1 | | | 11 | | | | | | | | | s | | | | | z | | | | | valeidov
sahtes
sahtes
saatsisans
tebnas | | z | | | | 1 | 1 | | ž | ε | | | ž | 1 | , | | | | 41
6
2 | | | | z | | ٤ | ٤ | ž | 71
1
2 | | I | | | promona
portland
pullorum
feating | | | | | | | | | | z | | 1 | | | | | | | | | | | | | | | ı | ε | | | | | papuana
paratyphi-8 v. odense
paratyphi-C
phoenix | | | | | | | | | | ı | | | | τ | | t | | | | | 91 | | | | | | | 7 | | | | | 0140
0170
0179m63170
010 | | | | | | | 1 | | z | ı | s | z | | 6 | | | | t | | | 1 | z | 7 | | | s | I | ī | Z | | z | t | new-brunswick
new-hands
newlands
sienstedten
stutch | | t | | | | | | | | | | | | ι | | | | | ζ | | | | 6
Z | | | | | ζ | | ī | | | noissin
amaumila
abaion
svogan | | t | | | | | | | | | | | | | | z | ī | 1 | | | | | ī | | | | ī | ζ | | | | τ | sifebta
neachaster
noisean
sifogeannia | | | | | | | | | | | | | | | | | | | z | | | | t | | | | | I
I | | t | | | eud310)
eknei
ebnii-emoi
ea1imoi
enei3ui | | | | | | | ı | | t | | | | | | | | | | τ | | | | | | | | 2 | | | | | |
opensess
Lowe
Lowe
Lowe
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers
Lowers | | 1 | | | | | | | 1 | t | 1 | ī | | I | | | | | E
I | | | 1 | 8 | I | | I | | ž | | | | | qurased;
elemageur;
enedu
este
brolase; | | | | | | | | | | | | | | s | | | | | | | | | 1 | | | | ī | | | | | | beyt
filinatum
musaniis
musanata
iliste | | τ | | | | | | | | ī | | | | t
z | | | | | | | | ī | 2 | | ī | | | 1 (| | | | | louger
nildu
hobissesu
grudriu
fasseudami | | | | | | | | | | | | | | 1 | | | | | ī | | | | z | | | | | | | | | | obstolo
bysono
pricial
pricial
sylves | | | | | | | | | | | t | z | | E | | τ | | | t | | ε | | z | | | | t | î
ç | | | | 1 | arrau
nolerae-suis
oleyark | | t | | | | | | | | 1 | | - | | 9 | | t | | 1 | t
t | | τ | 1 | 1 | | | 1 | z | t | | | t | | onsriensis
vols-avvblficans
radford
randenburg | | 1 | | | | | t | | 3 | | 1 | ε | | 2 | τ | | | | | | | | ٤ | | | | ī | 1
7
2 | | | | | nise
lie
nise
esni
esni | | | | | | t | | | ı | t | z | | | į. | | | | | | | | 91 | z | | | | | ε | | | | | voadi
1986
1974 kvaises
1986 kvaises
1986 kvaises | | | | | | | | | | | | | | t | | τ | | | z | | | | 1 | | | | | t | | | | | berdeen
bortis-bouts
gans
perdeen | | ON I'N H | 4N | AZN | REBN | TNOH | ON | SSIN | NNIH | нзен | SSVN | GH. | ZH | VI. | XX | KYN | YNO | GNI | TII | AGI | IWH | v o | VI.4 | эс | 130 | COMM | сого | CALIF | VBK | INA | SVIV | YIY | Bertoras | | 16301 | | | | 919 | 26 | 0 | 11 | 0 | c1 | 0 | L | 1 | z | 19 | 11 | 0 | ٥٦ | 1 0 | 010 | sc | 9 | 71 | 0 | 22 | 22 | 6 | .52. | |---|-----------------|------------------------------|----------------------------|-----------------------|-------------|------|-------|----------|--------|----------|------|------|------|-----|------|----|-----|-----|--------------|-----|------|----------|-----|------|-------|--------|------| | nuchbepje Etonb B | | 190 | 99 120 | 7. | - | - | - | - | - | Ť | Ť | H | Ť | | | + | | + | 1 | | | | | | | | | | untypeble group G
untypeble group G
untypeble group H | | HN
HN | 33 Tut
33 vox
39 nut | 5 | ī | 1 | nosquedsev | 6 | *14 | 99 130 | ī | | | | | | | | Н | _ | | | + | + | + | + | + | | | Н | Н | | | _ | | wessenaar
westerstede | 2 | F1s
F1s | 99 Jul.
99 vol. | 9 | t | 1 | | | | wirchow | 91 | 970
H1ch | 99 YMM
99 130 | 5 | | | | | | | | | | | | | | | 1 | | | | | | | | | | sexas
thumanutle | 2 t | bri
ed | 99 AON
99 das | C | 1 | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | liavabnus
sessadalias | 71 | Aria
Fla | 99 AON | 7 | ī | 1 | | | | | | | | 1 | | | | | - | | | | | 1 | | | | | stanley | 92 | 583W
0140 | 99 VON 66 | 1 | - | - | t | H | | _ | _ | Н | _ | | | + | + | + | + | + | - | 1 | Н | ī | - | | - | | ruturqros
Azngswis | 0 91 | x91-60 | 99 NON
99 NON | 1 5 | 1 2 | | | | | | | | | I | | | | | | | | | | | | | | | nadmetes
Studgeis | 61 | Ala-Ariz-Fla-NJ-WYC
DC | 99 AON
99 Bray | 51 | Š | 1 | | | | | | | | ż | 2 | | | | | | | | | | 1 | | 1 | | labras | 1 | Mass-WY81-WYC | 99 AON | S | 7 | | | Н | | | | Н | | | | 1 | + | + | † | + | | | Н | Н | z | 1 | | | rubislaw
saphra
sarajane | 61
29 | #3U-xeT
xeT
0140 | 88 vol
88 vol
89 fut | ξ
ξ1 | 9 | | | | | | | | ı | 13 | t | | | | 1 | | 1 | Z | | | | | | | Cent | 27 | 4418-72 | 88 350
88 908 | T T | 7 | | | | | | 1 | | ı | 8 | ľ | | | | | | 1 | | | | | | | | muniluq
galbası | 701 | Conn-Fla-NYB1-R1-Tex | 99 YAN
90 YOM | 86
01 | 9 | | ζ | | 7 | | | | | 3 | 9 | | | I | S | 1 | 1 | | П | 2 | | t | L | | portland | 1 | III
NAC | 99 AON | î. | 7 | - | | | | | | | | | | | | | | | | | | | 1 | | | | snowoq
snowoq | 7 | C#1 | 99 130 | 7 | | | _ | H | | | | Н | _ | | | + | + | + | + | 4 | _ | | Н | Н | - | | - | | paratyphi-B v. odense
paratyphi-C | 2 | Colo
Colo | 99 TM | I I | 1 | | | | | | | | | I | | | - 1 | | | | | | | | | | | | paratyphi-A | 7E | Tex
Cal | 99 130
99 110 | 7 | | | | | | | | | | ı | | | | | | | | | П | | | | | | ofao | 51 | 2 a H | 99 AON | 12 | t | | | | | | | Н | | - | | + | + | + | + | + | _ | | | Н | | | | | nitametin
so | 0 | P1
NAC | 33 1AM
33 1AM | 1 | t | | | | 0140
noi10 | £ 1 | 0140
0140-421H | 99 100
99 Iut | 12 | | | | | | | | | | | | | | | | | | 3 | | | | | | | nestedten | 15 | Utah
Ark-La-MYC-Tex | 99 AON | 3e | ç | | | | | | | | ı | ۷ | ε | | 7 | | ī | | t | 1 | П | | Z | | | | spurgau | 2 | La
Colo | 99 vol | T
6 | 1 | 1 | ues-provantok | 35 | x9 <u>T</u> | 99 AON | 87 | 9 | - | 1 | _ | 7 | - | 2 | Н | | 9 | | - | 4 | - | 5 | | | | | Н | 1 | | £ | | molade
musenster
avosan | 92 | Wisc
Fla-La-Wisc
XoI | Peb 66
Nov 66
May 66 | 77 | L | 1 | z | | | | | | | I | | | | - | | | | | | | | | | | noisein
emauni(n | 0 | NAY
OF 1* | 33 VOM
33 nal | 1 | 1 | - | ı, | | | | | | | | z | | | | | | ı | | | П | | | Ţ. | | Flosauuju | 09 | pul | 99 AON | 9 | 1 | ┿ | | \vdash | - | - | - | Н | - | z | - | + | + | + | + | + | | | Н | Н | | _ | | | nolenam
elfoqeannim | † 71 | NAV
Ken | 99 1nr | ž | | | | | | | | | | | | | | | | | | | П | П | | | 1 | | manchester
madelts | 9 | LN-a1A | 99 AON | E | 7 2 | 1 | | | | | | | | | | | | - | 1 | | | | П | | | | | | mainut
amainut | ξ , | *Id
VAN | 99 150
39 1ut | Ĭ, | abnit-amoi | 0 | Ca1
Ariz-Cal-111 | 99 19A | 9 | , | 1 | | | | | | | | | | | | | τ | | t | | | | | | 2 | | a ud 3\$ c. A | 71 | YAN | 99 8ny | Ĭ | | _ | | _ | | | | | | | | | | _ | 4 | | | | | | | | t | | irumu
Johannesburg
Kaapstad | 6 | CO10 | 99 ANN
99 ANN | Ĭ | t - | 1 | | | | | | | | | | | | | | | | | | | t | | | | "sausanus
uopeqs | 801
C1 | Mo-Well
111
14x | 99 8ny
99 130 | 2 2 | | | | | | | | | | z | | | | | | | | | П | | | 1 | 7 | | brollish | 06 | PA-DN | 99 AON | 62 | ž | + | , | \vdash | - | \vdash | | ī | _ | | | + | + | + | + | - | 1 | 1 | Н | 2 | | | - | | anadad
aliad | 0 | MICh-WYC | 99 Iul.
99 voli | 5 | ž | 1 | | | | | | | | | | | - 1 | | | | | | П | | ı | | | | *Isaacub
*Isaacub | II. | 111 | 99 3dy
99 1dy | 2 | | | | | | | I | | | | | | | | | | | | | | | | | | stensing
Liotag | Ö
ÖŽ | NAC
MTTP | 99 YOM | 6 | - | | | | ı | | | | | 1 | | | | | 1 | | | | | | 1 | | | | emaileg
musenilieg | | NA-BI
C010 | 99 das
99 non | 1 | 1 | - | | | | | | | | ľ | | | | | | | | | | | | 1 | | | pakes | 9 | NC. | 99 120 | 6 | _ | - | _ | L | _ | | | Н | | | | _ | 4 | 4 | 4 | 4 | | | - | 6 | | | _ | | 130blaceaub
Lasbuettel | 8 | 0.418-01
0.140
x9T-f2M | 98 gas
99 guA
99 330 | 91 7 9 | | | | | z | | | | | Z | ī | | | | | | | z | | 4 | | | 1 | | drypool | 8 | Cal
Cal-WYC | 99 120
99 das | 3 | 1 | | | | denver | ž | xeT | 99 AON | ī | 1 | | | - | | | | H | | ī | | + | + | + |
+ | + | | | | | , | | | | *1[[#AJU3 | 5 | 111
61-614 | 99 AON | 3 | ž | colorado | 9 | Ta
NY-C | 96 dag
90 nut | I I | t | | | | cholerae-suis
coleypark | 0 99 | #1# | 99 8ny | 7
01 | 1 | | | | | | | | | | | | | | 1 | | | , | | | z | | | | chailey | 92 | Tex
N | 99 VOM | 9 | t | - | | | | | 1 | | | z | z | | | | | | | | | | | | | | URTTRO | 21 | xəŢ | 99 AON | 9 | ž | | | | | | | Ц | | £ | | 1 | 4 | 4 | 1 | 1 | | | | Ц | | - | | | bredford
Aludenberd
Einfornia | 79
01 | Colo-MJ
Conn
F14 | 99 100
99 130 | 71 2 | | | | | | | I | | | | | | | | | | | | П | | | | | | ontsition-sland | 77 | III
Hat
Local | 33 nut
33 vol | 7
21 | ī | 1 | | | z | powerre | 0 | [#3 | 99 Jdy | t | | | | | | | | | _ | | | + | + | + | + | + | - | | Н | Н | | | | | niliad
Esnid | 75 | Fla-NYC-NY-BI
Pa | 99 AON
99 May | 22 | ε | | | | | | | | | | | | | 1 | | | | | | | T. | 1 | 1 | | nitaus | 0 | No
C#1 | 99 day
99 mul | ž
I | sacnawys
agnaiga | 52 | 6. 1 | 39 Lut
89 vov | 91
1 | 2 | | | | | | | | | | | 1 | | | | | | | | | | | | | amager
arechavaleta | 1 15 | Ч⊃ты
Ig-AN | 99 130
99 AON | E | I | 4 | | | Ynedle | 51 | NAC-14× | 99 AON | 11 | | - | _ | | | | | | _ | 1 | | + | + | - | + | - | | \vdash | | Ц | 1 | | | | siachus
sborts-bovix | 0 0 | Tex
Tex
111 | 33 nat
33 vow
33 vow | \$
£ | Ž | | | | | | | | | Z | | | | | | | | | | | t | | | | aberdeen | ž
t | Va
Ca1 | 38 yes
39 720
39 780 | Ĭ | | | | | | | t | | | | | | | | | | | | | | | | | | | 1961-1961 | | | | | OAM | SIM | AM | HSYM | IA | ٧٨ | IA | HYIO | X21 | NNZL | as | os | 18 | 4 2 | 060 | YTHO | OING | ON: | 265 | 3-18 | 18-77 | ¥-AN | | 2 4 X 1 O W 2 S | SAL, SURV. UNIT | STATS
TRAJ
GETROSER | LAST
LAST
REPORTED | 1966
CUM,
TOTAL | JATOT | - | | | | | | | | - | - | | | | 1 | | | 3.40 | - | ont. | - 108 | -4 -00 | *-^^ | | | TOTAL | 22125 | Number | 3961 | ava. | | | | | | | | 8 2 | IIN | CE | 0 | N I | 1) | 0 | 4 3 | Я | | | | | | | | | | 9 | 961 ONING | NAMON NA | W.I. (TOTAL | most | 02411 | ONT | e vins | NON | ve a | num. | awa. | | | | | | | | | | | | | | | Age and Sex Distribution of Individuals Reported as Harboring Salmonellae During November 1966 TABLE III | Age (Years) | Male | <u>Female</u> | <u>Unknown</u> | Total | %_ | Cumulative % | |-----------------|------|---------------|----------------|-------|------|--------------| | Under 1 | 167 | 153 | 9 | 329 | 21.7 | 21.7 | | 1 - 4 | 204 | 180 | 4 | 388 | 25.6 | 47.3 | | 5 - 9 | 93 | 96 | 1 | 190 | 12.5 | 59.8 | | 10 - 19 | 76 | 67 | | 143 | 9.4 | 69.2 | | 20 - 29 | 40 | 72 | 1 | 113 | 7.5 | 76.7 | | 30 - 39 | 34 | 51 | 2 | 87 | 5.7 | 82.4 | | 40 - 49 | 29 | 45 | 1 | 75 | 4.9 | 87.3 | | 50 - 59 | 31 | 32 | 1 | 64 | 4.2 | 91.5 | | 60 - 69 | 30 | 33 | | 63 | 4.2 | 95.7 | | 70 - 7 9 | 14 | 24 | | 38 | 2.5 | 98.2 | | 80 + | 9 | 16 | 1 | 26 | 1.7 | 99.9 | | Child (Unspec.) | 14 | 9 | 4 | 27 | | | | Adult (Unspec.) | 27 | 13 | 3 | 43 | | | | Unknown | 237 | 226 | _72_ | 535 | | | | Total | 1005 | 1017 | 99 | 2121 | | | | % of Total | 49.7 | 50.3 | | | | | TABLE IV SEPORTED NORHINAN INDIATES BY SEROTYPE AND SOURCE, **NOMEMBER, 1966 | ll Mos.
Total | abortus-h
alachua
anatum
bareilly
binga | blockley
braenderu
bredeney
californi | chester
cholerae-suis
cholerae-suis
cubana
denver | dublin
eastbourne
rimsbuerrel
enteritidis | gallinarum
give
grumpensis
habana
halmstad | heidelberg
infantis
inverness
java | jedburgh
kentucky
lexington
1111e
Itvingstone | luciana
manhatran
manila
meleagridis
minneapolis | minnesota
montevideo
muenchen
muenster
new-brunsvick | nevington
nevport
norwich
oranienburg
orion | osio
panama
paratyphi-B
pomona
poona | reading
saint-paul
san-diego
schwarzengrund
senitenberg | simebury
taksony
tennessee
thompson
typhi-murium | typhi-morium v c
urbana
westerstede
wichita | untypable group
untypable group
untypable group
untypable | Total | |--|---|--|---|--|--|---|---|--|--|---|--|---|--|---|--|-----------------| | and the | | 192
33
59
59
52
52
52
53 | 143
5 5 6 h | 247 du
23 du
140 eu
87 en | 9 2 6 2 6 | 243
134
100
100
100
100
100
100
100
100
100
10 | 76 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21 00 00 00 00 00 00 00 00 00 00 00 00 00 | 145 ne
174 or
174 or | 4 2 6 6 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 | 312 30 32 2 | 9 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 191 - 401 | 7-0- | 7,032 | | lotal 1 | | 29: | 33 7 2 | 25.2 | ~ = 4 | 27 | -2225 | -000- | ^=0 | -9-0- | | 92=82 | | 22 | | | | unouqun | 11111 | ППП | 11111 | шш | шШ | 11111 | 11111 | шщ | 11111 | | -1444 | 11111 | -1111-4 | шш | | 13 1,026 | | anitoidonuim | | | | | | | | | | | | | | | | | | rancreatin
fairstem material | 24 | | | 2 | - | | | | | 4 | | | | ~ - | | 15 13 | | earmine dye | | | 01 | | | - | | - | - | | - | | | | | 9 | | 19bwod bloryfl | | | | | | | | - | | | ~ | | | | | | | substance
liver powder | | | | - | | | | | | | | | | | | - | | picuteary | | | | - | | | | | | | | | | | | - | | have fastnemnovivne | | | | | | -9 | | | - | - | - | | | | _ | -3 | | neit Antyin Milm | 4 - | | | | | | | | ~ | ~ - | | | | | | 12 | | turele water | | | | | | | | - | | | | | | | | - | | byesti
Total offwur | | | | ~ | | | - | - | | _ | | | - | - | | 2 5 | | 913303 | | - | | | | _ | | - | | | | - | | | - | £ | | againes
nisture lamine | | ~ | | | | | | ~ | ~ | | | | - | - | | 9 | | from datt | | | | | - | | - | | | | | | - | | | ~ | | ,beel lemine
nwondnu | | | ** | n 80 | - 4 | - | - | - | 40 | - ~ | | - ~ | | 4 | _ | 7 | | sdears resu | | | | - 4 | | - | ~ | | 4 | | | - | - | ~ 4 | | 33 | | heed made beat | - | | | - | | | | | | | | | | | - | F1 | | beel naiva | | | | | | | | | | | | | | | | - | | tear heal feal | | | | | | | - | | | | | | | | - | | | livestock feed | | | | ~ 0 | | | - | | | | | | | | _ | 2 | | unouwun | - | N | | | - | | ~ ~ | - | - | | | - | | - | - | = | | poultry meal | | | | | | | | | | | | | | | | - 2 | | fam villed | - | | | , | - | | _ | | | | | | | | | | | niiselag
frog legs | | | | | | | | | | ** | | | ~ | | | 7 | | But 2803 | - | | - 4 | | | | | | | | | | | | | 4 | | dried yeast
confectionery | | | - 4 | | | | | | _ | pp 64 | - | | | | | M | | *alboon | | | | - | | | | | | | | | P1 | | | P-0 | | Alim baith | 2 | | 10 | | | | | | | | | | - | 01 | | 20 | | aloubord gas
imale- | | - | | | _ | | | | - | | | | | | | 2 1 | | Age nestril | | ru | | | - | • | 1 | - | | | | | - | 14 | - | 22 | | rkk alhumen
rvedered ekk | | | ~ | - | | - | | | | | | | | | | F1 | | sing age | | | | | | | | | | | | | | | | - | | 81dv8
8A9 | ~ | - | | - | | | | | | | | | - | | | 4 | | un00391 | | | ~ | | | | | | | | | | | | | 100 | | 31446.7
7.1446.1 | - | | | - | - | | | | - | | - | | - | | | -2 | | say dat | - | | | | | | | | | | | | | | | 1 1 2 | | smily) | | | | - | | - | | | | 2 1 | | - | | | | 1 | | augues | | - | - | - | - | | | | - | | | 0.000 | | | | 1 | | autanop | 2 - | 2 | 0 ~ 4 | 2 83 | - | 70 4 | | | ~ | 9 ~ | | 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ~ = | n n 1 | | 1117 | | POATUE | ~ ~ | P4 | | - | - | 4 ~ - | | | | 4 | | - | | *1 | | 100 | | au i np. | - | | | | | | | | | | | | | - | | - | | Parton | - | - | | - | - | - | - | - | | | - | - | | | - | 1 | | llua | | | | | | | | | | | | - | | | | = | | coryacuo
ig8eou | | | | | | | | | | | | | | - | | 1 | | Layans | - 3 | | 22 - | | ~ | 5~ | - | - | ^ | ~ ^ | | **** | ~ 100 | | ** | 1 111 215 1 2 1 | | newsin | 4.~ | 0 | ~ | - v- | | 2 9 | ~ | | | -~ - | - | ~~ ~ | | ž - | | = | | Kaarnod | | - | | | | | | | | | | | | | | | | 報告 () () () () () () () () () (| abertus-bevis
alachus
matus
bareilly | blockley
braenderup
braenney
california | chester
cholerae-nus
cholerae-sus v von
cuhana
denver | by
hourne
buettel | Rallinarom
Rive
Rrumpensis
habana
halmstad | heidelberg
infantis
inverness
java | Jedburgh
kentucky
lexingion
1111e | luciana
menhattan
manila
meleagridis
minneapolis | minnencia
muenchen
muenchen
merekter
new-brunswick | newington
newport
norwich
oranienburg | osto
panana
paratyphi-8
pomona
poona | reading haini-peul haini-peul han-dego nchwarzengrund senfrenberg | aimsbury
taksony
tennasse
thompson
typhi-marium | ryphi-murium v cop
urbana
wasteratede
wichita
worthington | uniypable group i - 1 uniypable group K uniypable group O | T. real | Numerical Sectional Divisor Laboratory, News, 1999, working Salmonella Report from
testivational states and PS-PR-DIV of Microbiology, Washington, D.C. #### TABLE V REPORTED NONHUMAN ISOLATES BY SPROTYPE AND STATE, *NOVEMBER, 1966 | SEROTYPE | ALA | ART | ARA | CAL | coto | CONN | DC I | FLA | GA I | DA II | - | - | - | - | - | | - | | _ | - | - | - | _ | _ | - | - | 0HIO | - | ORE | PA | SC S | D TE | X L | TAHIV | A WAS | SH W | ISC | TOTAL | 11 MOS. | SEROTYPE | |--|-----|-----|-----|-------|------|------|------|-----|------|-------|-----|-------|----|---|-----|-------------------|-------|---|-------|-------------------|-----|-----|----|-----|-----|---|------|---|-------------|-----|------|------|-----|-------|-------|------|-----|----------------------------|-------------------|---| | abortus-bovis
alachua
anatum
bareilly
binza | | | 2 | 1 | | | | 1 | 2 | Ì | 1 6 | | 2 | | 2 | 1 | | | 1 4 | 1 | | | 17 | | | 1 | 2 | | | 22 | | | | | ı | | | 1
1
94
1
20 | 27
408
26 | abortus-bovis
alachus
anatum
bareilly
binza | | blockley
braenderup
bredeney
california
cerro | | | | 6 | | | | | | | 2 | 1 | | 1 | | 15 | 1 1 2 | | 1 | 2 | 1 1 | 1 1 | 2 | | | | | 3 | 2 | | | | | | | | 1 | 15
16
11
1
5 | 33
69
29 | blockley
braenderup
bredeney
california
cerro | | chester
cholerae-suis
cholerae-suis v kun
cubana
denver | | | | | | | | 1 | 1 | | 2 | 4 | | | 2 | 9 | | 4 | 15 | 5 | | 1 | | | 8 | 1 | 1 | | | 1 | 1 | 2 | 3 | | | | 2 | 24
2
7
33
3 | 93
152 | chester
cholerae-suis
cholerae-suis v kun
cubana
denver | | derby
dublin
eastbourne
eimsbuettel
enteritidis | | | 1 | 1 4 | | 1 | 1 | | 1 | | | 2 4 1 | 1 | | | 55 | | | 6 | 2 | 5 | | 4 | | | | 2 | | | 30 | 1 | | | | | | | 103
1
2
25
2 | 33
2
140 | derby
dublin
eastbourne
eimsbuettel
enteritidis | | gallinarum
give
grumpensis
habana
halmstad | 1 | | 1 | 1 | | | 1 | | | | 1 | | 1 | | 1 | 2 | 1 | | 1 4 | 1 | | | 2 | | | | | | | 1 | | | | | | | | 11
1
1
4 | 52
6
2 | gallinarum
give
grumpensis
habana
halmstad | | heidelberg
infantis
inverness
java
javiana | | 2 | , | 38 | | | | | 8 | | | 3 | 1 | | 1 | 31
3 | | | | 12 | | 5 | | | | | 1 | | 4 | 7 8 | | | 1 | 2 | 1 | 5 | 1 | 114
47
1
1
5 | 334
1
50 | heidelberg
infantis
inverness
java
javiana | | jedburgh
kentucky
lexington
lille
livingstone | | 3 | | | | | 1 | | | | | 2 | | | | 1 | 2 2 | | 1 | | | | | | | | 1 | | | | | | | | 1 | | | 7 2 2 3 | 12 | jedburgh
kentucky
lexington
lille
livingstone | | luciana
manhattan
manila
meleagridia
minneapolia | | | | | | | | | | | 1 | 1 | 1 | | | 1 | 1 | | 1 | 1 | | | 3 | | | | | | | 2 | | | | | | 1 | | 1
6
3
6 | 12 | luciana
manhattan
manila
meleagridis
minneapolis | | minnesota
montevideo
muenchen
muenater
new-brunawick | | | | 1 | | | | | 5 | | 4 | 3 | 1 | 3 | | 1
3
1 | 4 | | 4 2 | 2 | | 2 | 3 | | | 1 | | | | | | | 1 | | | | | 5
31
9
1 | 327
64
21 | minnesota
montevideo
muenchen
muenster
new-brunswick | | newington
newport
norwich
oranienburg
orion | | 1 | | 1 | | | | | 1 | | 1 1 | 1 | | 1 | 1 | 1
19
2 | 1 | | 2 | 3 | | | 4 | 1 3 | | | 1 | | | | | | 2 | | , | 1 | | 7
36
3
9 | 145
7
174 | newington
newport
norwich
oranienburg
orion | | oslo penama paratyphi-B pomona poona | 1 | 3 | | | | | | | | | | | | | 1 | | 1
1
1
1
4 | 9 2 | oslo
panama
paratyphi-B
pomona
poona | | reading
saint-paul
san-diego
schwarzengrund
senftenberg | 1 | 1 | | 4 4 5 | 2 1 | | 4 | 1 | 1 | | 1 | | 1 | | | 12
1
1
1 | | | 1 | 1
14
2
3 | | 2 2 | 1 | | | 1 | | | 2
5
3 | 10 | 1 | | | | 1 | | 6 | 10
53
11
50
21 | 315
106
251 | reading
saint-paul
san-diego
schwarzengrund
seoftenberg | | simsbury
taksony
tennessee
thompson
typhi-murium | | 2 | 1 | 1 1 | 2 | | 1 | | 3 | 3 | 4 3 | 9 | 2 | 1 | 2 2 | 1
1
15 | 1 | | 1 2 1 | 1 1 3 | | 1 5 | | | | | 3 | 1 | 1 | 12 | 1 | | 1 | 1 | | 1 3 | 7 | 1
17
8
93 | 191 | simsbury
taksony
tennessee
thompson
typhi-murium | | typhi-murium v cop
urbana
westerstede
wichita
worthington | | | | 2 | | | | 1 | 2 | 1 | 2 | | 2 | 2 | 1 | 2 | 1 | | 3 | 1 | | 1 | 1 | П | | 2 | | | 1 | 3 | | | | | | | | 21
5
5
1
24 | 18 | typhi-murium v cop
urbana
westerstede
wichita
worthington | | untypable group C-1
untypable group K
untypable group O
untypable | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | 1 | | | | | | | | | 3 2 2 | 3
7
10
5 | untypable group 0
untypable | | Total | 2 | 14 | 1 | 0 14 | 3 5 | 1 | 8 | 8 | 41 | 4 | 72 | 36 | 13 | 8 | 14 | 224 | 20 | 4 | 54 | 57 | 9 | 23 | 45 | 6 | - 8 | 6 | 11 | 4 | 19 | 100 | 4 | 2 | 8 | 3 | 6 1 | 4 | 20 | 1,026 | 7,032 | Total | Source: National Disease Laboratory, Ames, Iowa, weekly Salmonella Reports from individual states and CS-FDA-Div. of Microbiology, Washington, D. C. (NYA- New York-Albany) elm lides October late reports. ### TABLE VI OTHER SEROTYPES REPORTED DURING 1966 FROM NONHUMAN SOURCES | SEROTYPE | MONTH(S) | REPORTING CENTER(S) | NUMBER OF ISOLATIONS | |---------------------------------|-------------------------|---------------------|----------------------| | adelaide | Mar | La | 1 | | alagbon | Mar | NJ | 2 | | albany | Aug | Miss(1) | | | | Sep | Md (1) | 2 | | mager | May-Jul-Oct | Ark(3) | | | Annual Control | Oct | Ida(1) | 4 | | amsterdam | Jan | Ohio | 1 | | abelsberg | Jan | Ind | 1 | | erta | Feb | Ga(2) | | | | May | Ca1(1) | 3 | | oirmingham
oovis-morbificans | Jun | La | 1 | | ovis-morbificans | Jan | Cal(1) | 3 | | oradford | Aug
Jan | DC(2)
NJ | 1 | | | | | , | | cambridge | Apr | La | 1 | | caracas
carrau | Mar | La
Mass | 1 2 | | champaign | Apr
Mar-Oct | La | 4 | | colorado | Mar Mar | NJ | 1 | | corvallis | Apr-Jun | La | 2 | | drypool | Jun-Sep-Oct | La | 7 | | emek | Jul Jul | Tex | 1 | | eppendorf | Jan | NJ | i | | ayed | Apr | La(1) | | | | Apr | NC(1) | 2 | | gaminara | Jul | La(1) | | | , | Aug | Tex(1) | 2 | | namilton | Jan | La | 1 | | nartford | Mar | Fla | 1 | | illinois | Mar-Sep | Minn(2) | | | | Jun-Sep | La(2) | | | | Ju1 | Ca1(2) | 6 | | indiana | Jan | F1a(1) | | | | Jan | NJ(6) | | | | Feb-Mar-Apr-May-Jun-Oct | Ind(15) | (15) | | | Feb | La(1) | | | | Mar | Iowa(3) | | | | Mar | Miss(1) | | | | Mar | Pa(1) | | | | Jun | 111(1) | | | | Jul | SC(1) | | | | Aug
Oct | Mo(3)
Ohio(1) | 34 | | i ahama ahu | Mare | Mich(1) | | | ohannesburg | Mar | Mich(1)
Ark(1) | | | | Sep | NJ(1) | 3 | | aapstad | Sep
Mar | La | 1 | | cottbus | Feb | Ga | 1 | | itchfield | Apr | Ca1(1) | | | . Lectil Lead | May | Conn(4) | ! | | | May | Ga(1) | | | | May | Kan(2) | | | | Jun-Jul | F1a(9) | 1 | | | Jul | Ohio(1) | | | | Jul | Wash(1) | 19 | | nadelia | Jul | SC(1) | | | | | | 2 | ## TABLE VI (Continued) OTHER SEROTYPES REPORTED DURING 1966 FROM NONHUMAN SOURCES | SEROTYPE | MONTH(S) | REPORTING CENTER(S) | NUMBER OF ISOLATIONS | |-----------------------|--|---------------------|----------------------| | menston | Sep | Kan | 1 | | niami | Feb | Cal(1) | * | | | Feb | Tex(1) | | | | Ju1 | Fla(1) | | | | Ju1 | Wash(1) | 4 | | nikawashima | Jul | Ind | 2 | | ission | Mar | Ohio(1) | | | | May | La(1) | 2 | | ississippi | Mar | La(1) | | | | Oct | Va(1) | 2 | | ew-haw | Mar | NJ | 1 | | hio | Feb | Iowa(7) | | | | Feb | Minn(1) | | | | Jun | NJ(1) | | | | Jun | NYA(1) | 10 | | harr | Jan | Mich | 1 | | ortland | Jul | | 1 | | ullorum | Jan-Jun | Wash | 1 | | di korum | Control of the Contro | La(2) | | | | Jan | Mont(1) | | | |
Jan-Mar-Oct | Pa(3) | | | | Jan | Tenn(1) | | | | Jan-Apr-Jun | Va(9) | | | | Feb-Apr-Jun | Neb(4) | | | | Mar-May | Iowa(2) | | | | Mar-Apr-Aug-Sep | Minn(5) | | | | Mar | Ore(1) | | | | Mar-Apr | SC(3) | | | | Apr-Jun-Jul-Sep | Mo(4) | | | | Apr-Sep | Vt(2) | | | | Jun | Md(1) | | | | Jun | Ohio(5) | | | | Jun-Jul-Aug-Oct | Wisc(10) | | | | Jun | Wyo(1) | | | | Aug | | | | | Aug | Kan(1)
Mich(1) | 56 | | rubislaw | Jul | C(1) | | | | Jul | Conn(1) | | | | | La(2) | , | | | Aug | Ind(1) | 4 | | eremban | Aug | Kan | 1 | | siegburg | Feb-Sep-Oct | Mich(27) | | | | May-Aug-Sep-Oct | La(5) | | | | Oct | Ark(2) | 34 | | tockholm | May | Ohio | 1 | | eddington | Aug | La | 1 | | homasville | Jan | Ca1(1) | | | | Mar-Apr-May-Jun-Jul-Aug-Sep | La(21) | | | | Mar-May-Aug-Oct | Minn(4) | | | | May | Miss(1) | 27 | | ournai | Mar | NJ | 1 | | uebinger | Jan | Mich | 1 | | yphi | Jan | Mo | 1 | | yphi-suis | Feb-Mar | Cal(6) | 1 | | ypii1-suis | Mar Mar | Minn(1) | 7 | | ejle | Apr | La | 1 | | | | Minn | 1 | | aycross
esthampton | Sep
Mar | Kan | 1 | | | | - | - | | Total | | | 272 | Figure 1. REPORTED HUMAN ISOLATIONS OF SALMONELLA IN THE UNITED STATES